2 resultados para Endocrine

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis is a complex skeletal disorder characterized by compromised bone strength. Variation in bone mineral density (BMD) is a contributing factor. The aim of this research as to select informative single nucleotide polymorphisms (SNPs) in potential candidate genes from loci suggestively linked to BMD variation for fine mapping. The gene regulated by oestrogen in breast cancer 1 (GREB1), located at 2p25.1, was selected. GREB1 transcription is initiated early in the oestrogen receptor alpha regulated pathway. There was significant association between GREB1_03 and BMD variation at the lumbar spine and femoral neck (FN) in the discovery cohort. Significant association was observed between GREB1_04 and FN BMD in the replication cohort. The development and differentiation enhancing factor 2, the integrin cytoplasmic domain associated protein 1 and A-disintegrin and metalloprotease 17 were selected due to their respective roles in cell mobility and adhesion. There was no linkage or association observed between the Chr2 cluster SNPs and BMD. Two factors in bone remodelling are the attraction of bone cell precursors and endocrine regulation of the process, primarily through the action of parathyroid hormone (PTH). The C-C chemokine receptor type 3 (CCR3) encodes a CC chemokine receptor expressed in osteoclast precursors. The PTH receptor type 1 (PTHR1) encodes a G-protein coupled receptor for PTH. Association was observed between CCR3 haplotypes and BMD variation at the FN. There was no linkage or association observed between PTHR1 SNPs and BMD variation. Population genetic studies with complex phenotypes endeavour to elucidate the traits genetic architecture. This study presents evidence of association between GREB1 and BMD variation and as such, introduces GREB1 as a novel gene target for osteoporosis genetics studies. It affirms that common genomic variants in PTHR1 are not associated with BMD variation in Caucasians and supports the evidence that CCR3 may be contributing to BMD variation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic pollutant chemicals pose a major threat to aquatic organisms. There is a need for more research on emerging categories of environmental chemicals such as nanomaterials, endocrine disruptors and pharmaceuticals. Proteomics offers options and advantages for early warning of alterations in environmental quality by detecting sub-lethal changes in sentinel species such as the mussel, Mytilus edulis. This thesis aimed to compare the potential of traditional biomarkers (such as enzyme activity measurement) and newer redox proteomic approaches. Environmental proteomics, especially a redox proteomics toolbox, may be a novel way to study pollutant effects on organisms which can also yield information on risks to human health. In particular, it can probe subtle biochemical changes at sub-lethal concentrations and thus offer novel insights to toxicity mechanisms. In the first instance, the present research involved a field-study in three stations in Cork Harbour, Ireland (Haulbowline, Ringaskiddy and Douglas) compared to an outharbour control site in Bantry Bay, Ireland. Then, further research was carried out to detect effects of anthropogenic pollution on selected chemicals. Diclofenac is an example of veterinary and human pharmaceuticals, an emerging category of chemical pollutants, with potential to cause serious toxicity to non-target organisms. A second chemical used for this study was copper which is a key source of contamination in marine ecosystems. Thirdly, bisphenol A is a major anthropogenic chemical mainly used in polycarbonate plastics manufacturing that is widespread in the environment. It is also suspected to be an endocrine disruptor. Effects on the gill, the principal feeding organ of mussels, were investigated in particular. Effects on digestive gland were also investigated to compare different outcomes from each tissue. Across the three anthropogenic chemicals studied (diclofenac, copper and bisphenol A), only diclofenac exposure did not show any significant difference towards glutathione transferase (GST) responses. Meanwhile, copper and bisphenol A significantly increased GST in gill. Glutathione reductase (GR) enzyme analysis revealed that all three chemicals have significant responses in gill. Catalase activity showed significant differences in digestive gland exposed to diclofenac and gills exposed to bisphenol A. This study focused then on application of redox proteomics; the study of the oxidative modification of proteins, to M. edulis. Thiol proteins were labelled with 5-iodoacetamidofluorescein prior to one-dimensional and two-dimensional electrophoresis. This clearly revealed some similarities on a portion of the redox proteome across chemical exposures indicating where toxicity mechanism may be common and where effects are unique to a single treatment. This thesis documents that proteomics is a robust tool to provide valuable insights into possible mechanisms of toxicity of anthropogenic contaminants in M. edulis. It is concluded that future research should focus on gill tissue, on protein thiols and on key individual proteins discovered in this study such as calreticulin and arginine kinase which have not previously been considered as biomarkers in aquatic toxicology prior to this study.